Skip Navigation

NAR Top Articles - Genome Integrity, Repair and Replication

Genome Integrity, Repair and Replication

View all categories

March 2015

Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome
Erliandri, I; Fu, HQ; Nakano, M; Kim, JH; Miga, KH; Liskovykh, M; Earnshaw, WC; Masumoto, H; Kouprina, N; Aladjem, MI; Larionov, V
Nucleic Acids Res. 2014, 42, 11502-11516
Free Full Text
In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed (H) under bar uman (A) under bar rtificial (C) under bar hromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions...

The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2''-deoxycytidine lesions
Orta, ML; Hoglund, A; Calderon-Montano, JM; Dominguez, I; Burgos-Moron, E; Visnes, T; Pastor, N; Strom, C; Lopez-Iazaro, M; Helleday, T
Nucleic Acids Res. 2014, 42, 9108-9120
Free Full Text
Decitabine (5-aza-2'-deoxycytidine, 5-azadC) is used in the treatment of Myelodysplatic syndrome (MDS) and Acute Myeloid Leukemia (AML). Its mechanism of action is thought to involve reactivation of genes implicated in differentiation and transformation, as well as induction of DNA damage by trapping DNA methyltranferases (DNMT) to DNA. We demonstrate for the first time that base excision repair (BER) recognizes 5-azadC-induced lesions in DNA and mediates repair. We find that BER (XRCC1) deficient cells are sensitive to 5-azadC and display an increased amount of DNA single- and double-strand breaks. The XRCC1 protein co-localizes with DNMT1 foci after 5-azadC treatment, suggesting a novel and specific role of XRCC1 in the repair of trapped DNMT1. 5-azadC-induced DNMT foci persist in XRCC1 defective cells, demonstrating a role for XRCC1 in repair of 5-azadC-induced DNA lesions. Poly (ADP-ribose) polymerase (PARP) inhibition prevents XRCC1 relocation to DNA damage sites, disrupts XRCC1-DNMT1 co-localization and thereby efficient BER...

Opposing roles for 53BP1 during homologous recombination
Kakarougkas, A; Ismail, A; Klement, K; Goodarzi, AA; Conrad, S; Freire, R; Shibata, A; Lobrich, M; Jeggo, PA
Nucleic Acids Res. 2013, 41, 9719-9731
Free Full Text
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR...

Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases
Rajendra, E; Garaycoechea, JI; Patel, KJ; Passmore, LA
Nucleic Acids Res. 2014, 42, 13736-13748
Free Full Text
Fanconi anaemia (FA) is a genome instability disease caused by defects in the FA DNA repair pathway that senses and repairs damage caused by DNA interstrand crosslinks. At least 8 of the 16 genes found mutated in FA encode proteins that assemble into the FA core complex, a multisubunit monoubiquitin E3 ligase. Here, we show that the RuvBL1 and RuvBL2 AAA+ ATPases co-purify with FA core complex isolated under stringent but native conditions from a vertebrate cell line. Depletion of the RuvBL1-RuvBL2 complex in human cells causes hallmark features of FA including DNA crosslinker sensitivity, chromosomal instability and defective FA pathway activation. Genetic knockout of RuvBL1 in a murine model is embryonic lethal while conditional inactivation in the haematopoietic stem cell pool confers profound aplastic anaemia. Together these findings reveal a function for RuvBL1-RuvBL2 in DNA repair through a physical and functional association with the FA core complex. Surprisingly, depletion of RuvBL1-RuvBL2 leads to co-depletion of the FA core complex in human cells...

Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination
Lorenz, A; Mehats, A; Osman, F; Whitby, MC
Nucleic Acids Res. 2014, 42, 13723-13735
Free Full Text
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.

Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK
Meyer, B; Voss, KO; Tobias, F; Jakob, B; Durante, M; Taucher-Scholz, G
Nucleic Acids Res. 2013, 41, 6109-6118
Free Full Text
DNA double-strand breaks (DSB) are considered as the most deleterious DNA lesions, and their repair is further complicated by increasing damage complexity. However, the molecular effects of clustered lesions are yet not fully understood. As the locally restricted phosphorylation of H2AX to form gamma H2AX is a key step in facilitating efficient DSB repair, we investigated this process after localized induction of clustered damage by ionizing radiation. We show that in addition to foci at damaged sites, H2AX is also phosphorylated in undamaged chromatin over the whole-cell nucleus in human and rodent cells, but this is not related to apoptosis. This pan-nuclear gamma H2AX is mediated by the kinases ataxia telangiectasia mutated and DNA-dependent protein kinase (DNA-PK) that also phosphorylate H2AX at DSBs. The pan-nuclear response is dependent on the amount of DNA damage and is transient even under conditions of impaired DSB repair. Using fluorescence recovery after photobleaching (FRAP), we found that MDC1, but not 53BP1, binds to the nuclear-wide gamma H2AX. Consequently, the accumulation of MDC1 at DSBs is reduced...

RecQ-core of BLM unfolds telomeric G-quadruplex in the absence of ATP
Budhathoki, JB; Ray, S; Urban, V; Janscak, P; Yodh, JG; Balci, H
Nucleic Acids Res. 2014, 42, 11528-11545
Free Full Text
Various helicases and single-stranded DNA (ss-DNA) binding proteins are known to destabilize G-quadruplex (GQ) structures, which otherwise result in genomic instability. Bulk biochemical studies have shown that Bloom helicase (BLM) unfolds both intermolecular and intramolecular GQ in the presence of ATP. Using single molecule FRET, we show that binding of RecQ-core of BLM (will be referred to as BLM) to ssDNA in the vicinity of an intramolecular GQ leads to destabilization and unfolding of the GQ in the absence of ATP. We show that the efficiency of BLM-mediated GQ unfolding correlates with the binding stability of BLM to ssDNA overhang, as modulated by the nucleotide state, ionic conditions, overhang length and overhang directionality. In particular, we observed enhanced GQ unfolding by BLM in the presence of non-hydrolysable ATP analogs, which has implications for the underlying mechanism. We also show that increasing GQ stability, via shorter loops or higher ionic strength, reduces BLM-mediated GQ unfolding. Finally, we show that while WRN has similar activity as BLM, RecQ and RECQ5 helicases do not unfold GQ in the absence of ATP at physiological ionic strength...

Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells
Cagliero, C; Zhou, YN; Jin, DJ
Nucleic Acids Res. 2014, 42, 13696-13705
Free Full Text
In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes...

DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal
Britton, S; Dernoncourt, E; Delteil, C; Froment, C; Schiltz, O; Salles, B; Frit, P; Calsou, P
Nucleic Acids Res. 2014, 42, 9047-9062
Free Full Text
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA: RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion...

Replication stress by Py-Im polyamides induces a non-canonical ATR-dependent checkpoint response
Martinez, TF; Phillips, JW; Karanja, KK; Polaczek, P; Wang, CM; Li, BC; Campbell, JL; Dervan, PB
Nucleic Acids Res. 2014, 42,
Free Full Text
Pyrrole-imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides...

Back to the top