Skip Navigation

NAR Top Articles - Genome Integrity, Repair and Replication

Genome Integrity, Repair and Replication

View all categories

October 2015

Hydrolytic function of Exo1 in mammalian mismatch repair
Shao, HB; Baitinger, C; Soderblom, EJ; Burdett, V; Modrich, P
Nucleic Acids Res. 2014, 42, 7104-7112
Free Full Text
Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function.

Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome
Huang, Y; Hidalgo-Bravo, A; Zhang, EJ; Cotton, VE; Mendez-Bermudez, A; Wig, G; Medina-Calzada, Z; Neumann, R; Jeffreys, AJ; Winney, B; Wilson, JF; Clark, DA; Dyer, MJ; Royle, NJ
Nucleic Acids Res. 2014, 42, 315-327
Free Full Text
Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest measured in somatic cells but not the germline. The telomere carrying the CI-HHV-6 is also prone to truncations that result in the formation of a short telomere at a novel location within the viral genome. We detected extra-chromosomal circular HHV-6 molecules, some surprisingly comprising the entire viral genome with a single fully reconstituted direct repeat region (DR) with both terminal cleavage and packaging elements (PAC1 and PAC2)...

The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2'-deoxycytidine lesions
Orta, ML; Hoglund, A; Calderon-Montano, JM; Dominguez, I; Burgos-Moron, E; Visnes, T; Pastor, N; Strom, C; Lopez-Iazaro, M; Helleday, T
Nucleic Acids Res. 2014, 42, 9108-9120
Free Full Text
Decitabine (5-aza-2'-deoxycytidine, 5-azadC) is used in the treatment of Myelodysplatic syndrome (MDS) and Acute Myeloid Leukemia (AML). Its mechanism of action is thought to involve reactivation of genes implicated in differentiation and transformation, as well as induction of DNA damage by trapping DNA methyltranferases (DNMT) to DNA. We demonstrate for the first time that base excision repair (BER) recognizes 5-azadC-induced lesions in DNA and mediates repair. We find that BER (XRCC1) deficient cells are sensitive to 5-azadC and display an increased amount of DNA single- and double-strand breaks. The XRCC1 protein co-localizes with DNMT1 foci after 5-azadC treatment, suggesting a novel and specific role of XRCC1 in the repair of trapped DNMT1. 5-azadC-induced DNMT foci persist in XRCC1 defective cells, demonstrating a role for XRCC1 in repair of 5-azadC-induced DNA lesions. Poly (ADP-ribose) polymerase (PARP) inhibition prevents XRCC1 relocation to DNA damage sites, disrupts XRCC1-DNMT1 co-localization and thereby efficient BER...

DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal
Britton, S; Dernoncourt, E; Delteil, C; Froment, C; Schiltz, O; Salles, B; Frit, P; Calsou, P
Nucleic Acids Res. 2014, 42, 9047-9062
Free Full Text
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA: RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion...

Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes
Lee, M; Hills, M; Conomos, D; Stutz, MD; Dagg, RA; Lau, LMS; Reddel, RR; Pickett, HA
Nucleic Acids Res. 2014, 42, 1733-1746
Free Full Text
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner...

Opposing roles for 53BP1 during homologous recombination
Kakarougkas, A; Ismail, A; Klement, K; Goodarzi, AA; Conrad, S; Freire, R; Shibata, A; Lobrich, M; Jeggo, PA
Nucleic Acids Res. 2013, 41, 9719-9731
Free Full Text
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR...

DNA-PKcs is required to maintain stability of Chk1 and Claspin for optimal replication stress response
Lin, YF; Shih, HY; Shang, ZF; Matsunaga, S; Chen, BPC
Nucleic Acids Res. 2014, 42, 4463-4473
Free Full Text
The ataxia telangiectasia mutated and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) axis is the major signaling pathway activated in response to replication stress and is essential for the intra-S checkpoint. ATR phosphorylates and activates a number of molecules to coordinate cell cycle progression. Chk1 is the major effector downstream from ATR and plays a critical role in intra-S checkpoint on replication stress. Activation of Chk1 kinase also requires its association with Claspin, an adaptor protein essential for Chk1 protein stability, recruitment and ATR-dependent Chk1 phosphorylation. We have previously reported that, on replication stress, the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is rapidly phosphorylated by ATR at the stalled replication forks and is required for cellular resistance to replication stresses although the impact of DNA-PKcs onto the ATR signaling pathway remains elusive. Here we report that ATR-dependent Chk1 phosphorylation and Chk1 signaling are compromised in the absence of DNA-PKcs. Our investigation reveals that DNA-PKcs is required to maintain Chk1-Claspin complex stability and transcriptional regulation of Claspin expression...

PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways
Beck, C; Boehler, C; Barbat, JG; Bonnet, ME; Illuzzi, G; Ronde, P; Gauthier, LR; Magroun, N; Rajendran, A; Lopez, BS; Scully, R; Boussin, FD; Schreiber, V; Dantzer, F
Nucleic Acids Res. 2014, 42, 5616-5632
Free Full Text
The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites...

PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage
Tsanov, N; Kermi, C; Coulombe, P; Van der Laan, S; Hodroj, D; Maiorano, D
Nucleic Acids Res. 2014, 42, 3692-3706
Free Full Text
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the ' PIP degron ', that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol eta and Pol kappa focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol eta foci formation...

PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1
Langelier, MF; Riccio, AA; Pascal, JM
Nucleic Acids Res. 2014, 42, 7762-7775
Free Full Text
PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains-Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5' phosphate (5'P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation...

Back to the top

Impact factor: 9.112

5-Yr impact factor: 8.867

Senior Executive Editors

Keith Fox, Southampton, UK
Barry Stoddard, Seattle, WA, USA

For Authors

Open Access Options for Authors

Open access options for authors

PMC LogoRCUK Wellcome

Looking for your next opportunity?

Looking for jobs...