Skip Navigation

NAR Top Articles - Genome Integrity, Repair and Replication

Genome Integrity, Repair and Replication

View all categories

September 2015

PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways
Beck, C; Boehler, C; Barbat, JG; Bonnet, ME; Illuzzi, G; Ronde, P; Gauthier, LR; Magroun, N; Rajendran, A; Lopez, BS; Scully, R; Boussin, FD; Schreiber, V; Dantzer, F
Nucleic Acids Res. 2014, 42, 5616-5632
Free Full Text
The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites...

DNA-PKcs is required to maintain stability of Chk1 and Claspin for optimal replication stress response
Lin, YF; Shih, HY; Shang, ZF; Matsunaga, S; Chen, BPC
Nucleic Acids Res. 2014, 42, 4463-4473
Free Full Text
The ataxia telangiectasia mutated and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) axis is the major signaling pathway activated in response to replication stress and is essential for the intra-S checkpoint. ATR phosphorylates and activates a number of molecules to coordinate cell cycle progression. Chk1 is the major effector downstream from ATR and plays a critical role in intra-S checkpoint on replication stress. Activation of Chk1 kinase also requires its association with Claspin, an adaptor protein essential for Chk1 protein stability, recruitment and ATR-dependent Chk1 phosphorylation. We have previously reported that, on replication stress, the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is rapidly phosphorylated by ATR at the stalled replication forks and is required for cellular resistance to replication stresses although the impact of DNA-PKcs onto the ATR signaling pathway remains elusive. Here we report that ATR-dependent Chk1 phosphorylation and Chk1 signaling are compromised in the absence of DNA-PKcs. Our investigation reveals that DNA-PKcs is required to maintain Chk1-Claspin complex stability and transcriptional regulation of Claspin expression...

Protein kinase C controls activation of the DNA integrity checkpoint
Soriano-Carot, M; Quilis, I; Bano, MC; Igual, JC
Nucleic Acids Res. 2014, 42, 7084-7095
Free Full Text
The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKC delta is able to activate the DNA integrity checkpoint. Finally, downregulation of PKC delta activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans.

The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa
Maddukuri, L; Ketkar, A; Eddy, S; Zafar, MK; Eoff, RL
Nucleic Acids Res. 2014, 42, 12027-12040
Free Full Text
Human DNA polymerase kappa (hpol kappa) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol kappa activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxodG bypass activity of hpol kappa in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC: 8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol kappa-catalyzed dCMP insertion opposite 8-oxo-dG similar to 10-fold and extension from dC: 8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (k(pol)), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol kappa were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol kappa was observed in human cells treated with hydrogen peroxide...

DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal
Britton, S; Dernoncourt, E; Delteil, C; Froment, C; Schiltz, O; Salles, B; Frit, P; Calsou, P
Nucleic Acids Res. 2014, 42, 9047-9062
Free Full Text
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA: RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion...

The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2'-deoxycytidine lesions
Orta, ML; Hoglund, A; Calderon-Montano, JM; Dominguez, I; Burgos-Moron, E; Visnes, T; Pastor, N; Strom, C; Lopez-Iazaro, M; Helleday, T
Nucleic Acids Res. 2014, 42, 9108-9120
Free Full Text
Decitabine (5-aza-2'-deoxycytidine, 5-azadC) is used in the treatment of Myelodysplatic syndrome (MDS) and Acute Myeloid Leukemia (AML). Its mechanism of action is thought to involve reactivation of genes implicated in differentiation and transformation, as well as induction of DNA damage by trapping DNA methyltranferases (DNMT) to DNA. We demonstrate for the first time that base excision repair (BER) recognizes 5-azadC-induced lesions in DNA and mediates repair. We find that BER (XRCC1) deficient cells are sensitive to 5-azadC and display an increased amount of DNA single- and double-strand breaks. The XRCC1 protein co-localizes with DNMT1 foci after 5-azadC treatment, suggesting a novel and specific role of XRCC1 in the repair of trapped DNMT1. 5-azadC-induced DNMT foci persist in XRCC1 defective cells, demonstrating a role for XRCC1 in repair of 5-azadC-induced DNA lesions. Poly (ADP-ribose) polymerase (PARP) inhibition prevents XRCC1 relocation to DNA damage sites, disrupts XRCC1-DNMT1 co-localization and thereby efficient BER...

Mutant DnaAs of Escherichia coli that are refractory to negative control
Chodavarapu, S; Felczak, MM; Simmons, LA; Murillo, A; Kaguni, JM
Nucleic Acids Res. 2013, 41, 10254-10267
Free Full Text
DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (beta clamp), and both DnaAcos and H202Y resist inhibition by the Hda-beta clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-b clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor...

PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1
Langelier, MF; Riccio, AA; Pascal, JM
Nucleic Acids Res. 2014, 42, 7762-7775
Free Full Text
PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains-Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5' phosphate (5'P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation...

Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin
Lan, L; Nakajima, S; Wei, LZ; Sun, LX; Hsieh, CL; Sobol, RW; Bruchez, M; Van Houten, B; Yasui, A; Levine, AS
Nucleic Acids Res. 2014, 42, 2330-2345
Free Full Text
Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (similar to 90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero-or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA-and transcription activation-dependent manner...

Opposing roles for 53BP1 during homologous recombination
Kakarougkas, A; Ismail, A; Klement, K; Goodarzi, AA; Conrad, S; Freire, R; Shibata, A; Lobrich, M; Jeggo, PA
Nucleic Acids Res. 2013, 41, 9719-9731
Free Full Text
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR...

Back to the top