Skip Navigation

NAR Top Articles - Genomics

Genomics

View all categories

February 2015


Optimization of scarless human stem cell genome editing
Yang, LH; Guell, M; Byrne, S; Yang, JL; De Los Angeles, A; Mali, P; Aach, J; Kim-Kiselak, C; Briggs, AW; Rios, X; Huang, PY; Daley, G; Church, G
Nucleic Acids Res. 2013, 41, 9049-9061
Free Full Text
Efficient strategies for precise genome editing in human-induced pluripotent cells (hiPSCs) will enable sophisticated genome engineering for research and clinical purposes. The development of programmable sequence-specific nucleases such as Transcription Activator-Like Effectors Nucleases (TALENs) and Cas9-gRNA allows genetic modifications to be made more efficiently at targeted sites of interest. However, many opportunities remain to optimize these tools and to enlarge their spheres of application. We present several improvements: First, we developed functional re-coded TALEs (reTALEs), which not only enable simple one-pot TALE synthesis but also allow TALE-based applications to be performed using lentiviral vectors. We then compared genome-editing efficiencies in hiPSCs mediated by 15 pairs of reTALENs and Cas9-gRNA targeting CCR5 and optimized ssODN design in conjunction with both methods for introducing specific mutations...

Hyper conserved elements in vertebrate mRNA 3''-UTRs reveal a translational network of RNA-binding proteins controlled by HuR
Dassi, E; Zuccotti, P; Leo, S; Provenzani, A; Assfalg, M; D'Onofrio, M; Riva, P; Quattrone, A
Nucleic Acids Res. 2013, 41, 3201-3216
Free Full Text
Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'...

metaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA
Dale, RK; Matzat, LH; Lei, EP
Nucleic Acids Res. 2014, 42, 9158-9170
Free Full Text
Here we introduce metaseq, a software library written in Python, which enables loading multiple genomic data formats into standard Python data structures and allows flexible, customized manipulation and visualization of data from high-throughput sequencing studies. We demonstrate its practical use by analyzing multiple datasets related to chromatin insulators, which are DNA-protein complexes proposed to organize the genome into distinct transcriptional domains. Recent studies in Drosophila and mammals have implicated RNA in the regulation of chromatin insulator activities. Moreover, the Drosophila RNA-binding protein Shep has been shown to antagonize gypsy insulator activity in a tissue-specific manner, but the precise role of RNA in this process remains unclear. Better understanding of chromatin insulator regulation requires integration of multiple datasets, including those from chromatin-binding, RNA-binding, and gene expression experiments. We use metaseq to integrate RIP-and ChIP-seq data for Shep and the core gypsy insulator protein Su(Hw) in two different cell types, along with publicly available ChIP-chip and RNA-seq data...

The complex methylome of the human gastric pathogen Helicobacter pylori
Krebes, J; Morgan, RD; Bunk, B; Sproer, C; Luong, K; Parusel, R; Anton, BP; Konig, C; Josenhans, C; Overmann, J; Roberts, RJ; Korlach, J; Suerbaum, S
Nucleic Acids Res. 2014, 42, 2415-2432
Free Full Text
The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT (R)) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems...

Sensitive, multiplex and direct quantification of RNA sequences using a modified RASL assay
Larman, HB; Scott, ER; Wogan, M; Oliveira, G; Torkamani, A; Schultz, PG
Nucleic Acids Res. 2014, 42, 9146-9157
Free Full Text
A sensitive and highly multiplex method to directly measure RNA sequence abundance without requiring reverse transcription would be of value for a number of biomedical applications, including high throughput small molecule screening, pathogen transcript detection and quantification of short/degraded RNAs. RNA Annealing, Selection and Ligation (RASL) assays, which are based on RNA template-dependent oligonucleotide probe ligation, have been developed to meet this need, but technical limitations have impeded their adoption. Whereas DNA ligase-based RASL assays suffer from extremely low and sequence-dependent ligation efficiencies that compromise assay robustness, Rnl2 can join a fully DNA donor probe to a 3'-diribonucleotide-terminated acceptor probe with high efficiency on an RNA template strand. Rnl2-based RASL exhibits sub-femtomolar transcript detection sensitivity, and permits the rational tuning of probe signals for optimal analysis by massively parallel DNA sequencing (RASL-seq)...

Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin
Thakur, RK; Yadav, VK; Kumar, A; Singh, A; Pal, K; Hoeppner, L; Saha, D; Purohit, G; Basundra, R; Kar, A; Halder, R; Kumar, P; Baral, A; Kumar, MJM; Baldi, A; Vincenzi, B; Lorenzon, L; Banerjee, R; Kumar, P; Shridhar, V; Mukhopadhyay, D; Chowdhury, S
Nucleic Acids Res. 2014, 42, 11589-11600
Free Full Text
Tumor metastasis refers to spread of a tumor from site of its origin to distant organs and causes majority of cancer deaths. Although >30 metastasis suppressor genes (MSGs) that negatively regulate metastasis have been identified so far, two issues are poorly understood: first, which MSGs oppose metastasis in a tumor type, and second, which molecular function of MSG controls metastasis. Herein, integrative analyses of tumor-transcriptomes (n = 382), survival data (n = 530) and lymph node metastases (n = 100) in lung cancer patients identified nonmetastatic 2 (NME2) as a key MSG from a pool of >30 metastasis suppressors. Subsequently, we generated a promoter-wide binding map for NME2 using chromatin immunoprecipitation with promoter microarrays (ChIP-chip), and transcriptome profiling. We discovered novel targets of NME2 which are involved in focal adhesion signaling...

Single-cell paired-end genome sequencing reveals structural variation per cell cycle
Voet, T; Kumar, P; Van Loo, P; Cooke, SL; Marshall, J; Lin, ML; Esteki, MZ; Van der Aa, N; Mateiu, L; McBride, DJ; Bignell, GR; McLaren, S; Teague, J; Butler, A; Raine, K; Stebbings, LA; Quail, MA; D'Hooghe, T; Moreau, Y; Futreal, PA; Stratton, MR; Vermee
Nucleic Acids Res. 2013, 41, 6119-6138
Free Full Text
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants...

REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer
Svensson, C; Ceder, J; Iglesias-Gato, D; Chuan, YC; Pang, ST; Bjartell, A; Martinez, RM; Bott, L; Helczynski, L; Ulmert, D; Wang, Y; Niu, Y; Collins, C; Flores-Morales, A
Nucleic Acids Res. 2014, 42, 999-1015
Free Full Text
The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds chromatin regions containing well-characterized cis-elements known to mediate REST transcriptional repression, while cell imaging studies confirmed that REST and AR closely co-localize in vivo. Androgen-induced gene repression also involves modulation of REST protein turnover through actions on the ubiquitin ligase beta-TRCP. Androgen deprivation or AR blockage with inhibitor MDV3100 (Enzalutamide) leads to neuroendocrine (NE) differentiation, a phenomenon that is mimicked by REST inactivation. Gene expression profiling revealed that REST not only acts to repress neuronal genes but also genes involved in cell cycle progression, including Aurora Kinase A, that has previously been implicated in the growth of NE-like castration-resistant tumors...

Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2
Millan-Arino, L; Islam, AMMK; Izquierdo-Bouldstridge, A; Mayor, R; Terme, JM; Luque, N; Sancho, M; Lopez-Bigas, N; Jordan, A
Nucleic Acids Res. 2014, 42, 4474-4493
Free Full Text
Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine-cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains...

Stability, delivery and functions of human sperm RNAs at fertilization
Sendler, E; Johnson, GD; Mao, SH; Goodrich, RJ; Diamond, MP; Hauser, R; Krawetz, SA
Nucleic Acids Res. 2013, 41, 4104-4117
Free Full Text
Increasing attention has focused on the significance of RNA in sperm, in light of its contribution to the birth and long-term health of a child, role in sperm function and diagnostic potential. As the composition of sperm RNA is in flux, assigning specific roles to individual RNAs presents a significant challenge. For the first time RNA-seq was used to characterize the population of coding and non-coding transcripts in human sperm. Examining RNA representation as a function of multiple methods of library preparation revealed unique features indicative of very specific and stage-dependent maturation and regulation of sperm RNA, illuminating their various transitional roles. Correlation of sperm transcript abundance with epigenetic marks suggested roles for these elements in the pre- and post-fertilization genome. Several classes of non-coding RNAs including lncRNAs, CARs, pri-miRNAs, novel elements and mRNAs have been identified which, based on factors including relative abundance, integrity in sperm, available knockout data of embryonic effect and presence or absence in the unfertilized human oocyte, are likely to be essential male factors critical to early post-fertilization...

Back to the top