Skip Navigation

NAR Top Articles - RNA

RNA

View all categories

December 2013


Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network
Liao, Q; Liu, CN; Yuan, XY; Kang, SL; Miao, RY; Xiao, H; Zhao, GG; Luo, HT; Bu, DC; Zhao, HT; Skogerbo, G; Wu, ZD; Zhao, Y
Nucleic Acids Res. (2011) 39 (9): 3864-3878
Free Full Text
Although accumulating evidence has provided insight into the various functions of long-non-coding RNAs (lncRNAs), the exact functions of the majority of such transcripts are still unknown. Here, we report the first computational annotation of lncRNA functions based on public microarray expression profiles. A coding-non-coding gene co-expression (CNC) network was constructed from re-annotated Affymetrix Mouse Genome Array data. Probable functions for altogether 340 lncRNAs were predicted based on topological or other network characteristics, such as module sharing, association with network hubs and combinations of co-expression and genomic adjacency. The functions annotated to the lncRNAs mainly involve organ or tissue development (e.g. neuron, eye and muscle development), cellular transport (e.g. neuronal transport and sodium ion, acid or lipid transport) or metabolic processes (e.g. involving macromolecules, phosphocreatine and tyrosine).

Characterization of extracellular circulating microRNA
Turchinovich, A; Weiz, L; Langheinz, A; Burwinkel, B
Nucleic Acids Res. (2011) 39 (16): 7223-7233
Free Full Text
MicroRNAs (miRNAs), a class of post-transcriptional gene expression regulators, have recently been detected in human body fluids, including peripheral blood plasma as extracellular nuclease resistant entities. However, the origin and function of extracellular circulating miRNA remain essentially unknown. Here, we confirmed that circulating mature miRNA in contrast to mRNA or snRNA is strikingly stable in blood plasma and cell culture media. Furthermore, we found that most miRNA in plasma and cell culture media completely passed through 0.22 mu m filters but remained in the supernatant after ultracentrifugation at 110 000g indicating the non-vesicular origin of the extracellular miRNA. Furthermore, western blot immunoassay revealed that extracellular miRNA ultrafiltrated together with the 96 kDa Ago2 protein, a part of RNA-induced silencing complex. Moreover, miRNAs in both blood plasma and cell culture media co-immunoprecipited with anti-Ago2 antibody in a detergent free environment. This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins...

Structural architecture of the human long non-coding RNA, steroid receptor RNA activator
Novikova, IV; Hennelly, SP; Sanbonmatsu, KY
Nucleic Acids Res. (2012) 40 (11): 5034-5051
Free Full Text
While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product...

Clustering RNA structural motifs in ribosomal RNAs using secondary structural alignment
Zhong, CC; Zhang, SJ
Nucleic Acids Res. (2012) 40 (3): 1307-1317
Free Full Text
RNA structural motifs are the building blocks of the complex RNA architecture. Identification of non-coding RNA structural motifs is a critical step towards understanding of their structures and functionalities. In this article, we present a clustering approach for de novo RNA structural motif identification. We applied our approach on a data set containing 5S, 16S and 23S rRNAs and rediscovered many known motifs including GNRA tetraloop, kink-turn, C-loop, sarcin-ricin, reverse kink-turn, hook-turn, E-loop and tandem-sheared motifs, with higher accuracy than the state-of-the-art clustering method. We also identified a number of potential novel instances of GNRA tetraloop, kink-turn, sarcin-ricin and tandem-sheared motifs. More importantly, several novel structural motif families have been revealed by our clustering analysis. We identified a highly asymmetric bulge loop motif that resembles the rope sling. We also found an internal loop motif that can significantly increase the twist of the helix. Finally, we discovered a subfamily of hexaloop motif, which has significantly different geometry comparing to the currently known hexaloop motif...

Transcriptome-wide discovery of circular RNAs in Archaea
Danan, M; Schwartz, S; Edelheit, S; Sorek, R
Nucleic Acids Res. (2012) 40 (7): 3131-3142
Free Full Text
Circular RNA forms had been described in all domains of life. Such RNAs were shown to have diverse biological functions, including roles in the life cycle of viral and viroid genomes, and in maturation of permuted tRNA genes. Despite their potentially important biological roles, discovery of circular RNAs has so far been mostly serendipitous. We have developed circRNA-seq, a combined experimental/computational approach that enriches for circular RNAs and allows profiling their prevalence in a whole-genome, unbiased manner. Application of this approach to the archaeon Sulfolobus solfataricus P2 revealed multiple circular transcripts, a subset of which was further validated independently. The identified circular RNAs included expected forms, such as excised tRNA introns and rRNA processing intermediates, but were also enriched with non-coding RNAs, including C/D box RNAs and RNase P, as well as circular RNAs of unknown function. Many of the identified circles were conserved in Sulfolobus acidocaldarius, further supporting their functional significance. Our results suggest that circular RNAs, and particularly circular non-coding RNAs, are more prevalent in archaea than previously recognized...

The folding of the hepatitis C virus internal ribosome entry site depends on the 3''-end of the viral genome
Romero-Lopez, C; Barroso-delJesus, A; Garcia-Sacristan, A; Briones, C; Berzal-Herranz, A
Nucleic Acids Res. (2012) 40 (22): 11697-11713
Free Full Text
Hepatitis C virus (HCV) translation initiation is directed by an internal ribosome entry site (IRES) and regulated by distant regions at the 3'-end of the viral genome. Through a combination of improved RNA chemical probing methods, SHAPE structural analysis and screening of RNA accessibility using antisense oligonucleotide microarrays, here, we show that HCV IRES folding is fine-tuned by the genomic 3'-end. The essential IRES subdomains IIIb and IIId, and domain IV, adopted a different conformation in the presence of the cis-acting replication element and/or the 3'-untranslatable region compared to that taken up in their absence. Importantly, many of the observed changes involved significant decreases in the dimethyl sulfate or N-methyl-isatoic anhydride reactivity profiles at subdomains IIIb and IIId, while domain IV appeared as a more flexible element. These observations were additionally confirmed in a replication-competent RNA molecule. Significantly, protein factors are not required for these conformational differences to be made manifest...

Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs
Schopman, NCT; Willemsen, M; Liu, YP; Bradley, T; van Kampen, A; Baas, F; Berkhout, B; Haasnoot, J
Nucleic Acids Res. (2012) 40 (1): 414-427
Free Full Text
Small virus-derived interfering RNAs (viRNAs) play an important role in antiviral defence in plants, insects and nematodes by triggering the RNA interference (RNAi) pathway. The role of RNAi as an antiviral defence mechanism in mammalian cells has been obscure due to the lack of viRNA detection. Although viRNAs from different mammalian viruses have recently been identified, their functions and possible impact on viral replication remain unknown. To identify viRNAs derived from HIV-1, we used the extremely sensitive SOLiD (TM) 3 Plus System to analyse viRNA accumulation in HIV-1-infected T lymphocytes. We detected numerous small RNAs that correspond to the HIV-1 RNA genome. The majority of these sequences have a positive polarity (98.1%) and could be derived from miRNAs encoded by structured segments of the HIV-1 RNA genome (vmiRNAs). A small portion of the viRNAs is of negative polarity and most of them are encoded within the 3'-UTR, which may represent viral siRNAs (vsiRNAs). The identified vsiRNAs can potently repress HIV-1 production, whereas suppression of the vsiRNAs by antagomirs stimulate virus production...

Regulation of somatic cell reprogramming through inducible mir-302 expression
Lin, SL; Chang, DC; Lin, CH; Ying, SY; Leu, D; Wu, DTS
Nucleic Acids Res. (2011) 39 (3): 1054-1065
Free Full Text
Global demethylation is required for early zygote development to establish stem cell pluripotency, yet our findings reiterate this epigenetic reprogramming event in somatic cells through ectopic introduction of mir-302 function. Here, we report that induced mir-302 expression beyond 1.3-fold of the concentration in human embryonic stem (hES) H1 and H9 cells led to reprogramming of human hair follicle cells (hHFCs) to induced pluripotent stem (iPS) cells. This reprogramming mechanism functioned through mir-302-targeted co-suppression of four epigenetic regulators, AOF2 (also known as KDM1 or LSD1), AOF1, MECP1-p66 and MECP2. Silencing AOF2 also caused DNMT1 deficiency and further enhanced global demethylation during somatic cell reprogramming (SCR) of hHFCs. Re-supplementing AOF2 in iPS cells disrupted such global demethylation and induced cell differentiation. Given that both hES and iPS cells highly express mir-302, our findings suggest a novel link between zygotic reprogramming and SCR, providing a regulatory mechanism responsible for global demethylation in both events...

NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells
Galardi, S; Mercatelli, N; Farace, MG; Ciafre, SA
Nucleic Acids Res. (2011) 39 (9): 3892-3902
Free Full Text
MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222...

Biogenesis of mammalian microRNAs by a non-canonical processing pathway
Havens, MA; Reich, AA; Duelli, DM; Hastings, ML
Nucleic Acids Res. (2012) 40 (10): 4626-4640
Free Full Text
Canonical microRNA biogenesis requires the Microprocessor components, Drosha and DGCR8, to generate precursor-miRNA, and Dicer to form mature miRNA. The Microprocessor is not required for processing of some miRNAs, including mirtrons, in which spliceosome-excised introns are direct Dicer substrates. In this study, we examine the processing of putative human mirtrons and demonstrate that although some are splicing-dependent, as expected, the predicted mirtrons, miR-1225 and miR-1228, are produced in the absence of splicing. Remarkably, knockout cell lines and knockdown experiments demonstrated that biogenesis of these splicing-independent mirtron-like miRNAs, termed 'simtrons', does not require the canonical miRNA biogenesis components, DGCR8, Dicer, Exportin-5 or Argonaute 2. However, simtron biogenesis was reduced by expression of a dominant negative form of Drosha. Simtrons are bound by Drosha and processed in vitro in a Drosha-dependent manner. Both simtrons and mirtrons function in silencing of target transcripts and are found in the RISC complex as demonstrated by their interaction with Argonaute proteins...

Back to the top